skip to primary navigationskip to content
 

High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology

last modified Dec 12, 2016 10:57 AM
A new paper by Thurid S. Gspann, Stefan M. Juckes, John F. Niven, Michel B. Johnson, James A. Elliott, Mary Anne White, Alan H. Windle is published in Carbon.

Abstract

Thermal conductivity of carbon nanotube (CNT) films and micro-fibres synthesised by floating catalyst chemical vapour deposition was measured by the parallel thermal conductance method. CNT films showed in-plane thermal conductivities of 110 W m−1 K−1. Online condensation into a micro-fibre morphology – a two-dimensional reduction in the transverse plane, including some axial stretching during solvent evaporation – resulted in room-temperature thermal conductivity values as high as 770 ± 10 W m−1 K−1, which is the highest thermal conductivity reported for CNT bulk materials to date. In specific terms, this matches the maximum thermal conductivity of heat-treated carbon fibre, but with a higher onset temperature for Umklapp scattering processes (300 K rather than 150 K). We selected four sample types to investigate effects of alignment, purity, and single- or multi-wall character on their thermal conductivity. For both the electrical and thermal conductivity of as-spun material, i.e. without any post-synthesis treatment, we show that the density and quality of CNT bundle alignment are still the predominant factors affecting these properties, outweighing the influence of single- or multi-walled character of the nanotubes. This raises the promise that, with optimal alignment and junction points, even higher values of thermal conductivity are achievable for macroscopic CNT fibres.

DOI: 10.1016/j.carbon.2016.12.006

Filed under: ,

RSS Feed Latest news

Multi-scale modelling of carbon nanotube reinforced crosslinked interfaces

Jan 28, 2017

A new paper by James A. Elliott and his Turkish collaborators Elif Ozden-Yenigun and Canan Atilgan is published in Computational Materials Science

Chirality-independent characteristic crystal length in carbon nanotube textiles measured by Raman spectroscopy

Jan 28, 2017

A new paper by John S. Bulmer, Thurid S. Gspann, Jon S. Barnard and James A. Elliott is published in Carbon.

MML Christmas Dinner 16-12-16

Dec 23, 2016

Wishing you all a Merry Christmas, from the Macromolecular Materials Lab.

High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology

Dec 12, 2016

A new paper by Thurid S. Gspann, Stefan M. Juckes, John F. Niven, Michel B. Johnson, James A. Elliott, Mary Anne White, Alan H. Windle is published in Carbon.

A summer tea time and farewell to Segio

Jul 22, 2016

The MML group had a nice tea time in the department on the hottest day of this summer. Dr Sergio Estravís has successfully finished his current research associate position in this summer. We wish Sergio has a greater success in the future.

View all news